新课标人教版八年级数学第十九章四边形知识点总结
新课标人教版八年级数学知识点总结
第十九章 四边形
一、平行四边形:
㈠.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
㈡.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
㈢. 平行四边形的面积:
1. 平行四边形的面积=底×高= ah(a是平行四边形的任何一条边长,h必须是边长为a的边与其对边的距离)
2. 同底(等底)同高(等高)的平行四边形面积相等。
㈣.平行四边形的判定 1.两组对边分别平行的四边形是平行四边形;
2.两组对边分别相等的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.对角线互相平分的四边形是平行四边形;
5.一组对边平行且相等的四边形是平行四边形。
提示:(1)平行四边形的判定方法都需要关于边、角、对角线之间的两个适当条件作为命题正确的构成条件;
(2)判定方法可作为 “画平行四边形”的依据;
(3)一组对边平行,另一组对边相等的四边形不一定是平行四边形。
㈤ 三角形中的中位线
1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
2、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
提示:(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。每一条中位线与第三边都有相应的位置关系和数量关系。
(三角形的中位线不仅可以证明直线平行,也可以证明线段的倍分关系);
(2)三角形中位线不同于三角形的中线,应从它们各自的定义加以区别。
3、三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
㈥ 两条平行线间的距离
1、定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
2、性质:⑴ 两条平行线间的距离处处相等;
⑵ 两条平行线间的任何两条平行线段都是相等的。
二、矩形
1、矩形的定义:有一个角是直角的平行四边形叫做矩形。
2、矩形的性质:⑴ 矩形具有平行四边形的一切性质;
⑵ 矩形的四个角都是直角;
⑶ 矩形的对角线平分且相等; (AC=BD)
⑷ 矩形是轴对称图形,它有2条对称轴。
提示:⑴ “矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;
⑵ 矩形的两条对角线分矩形为面积相等的四个等腰三角形。
3、矩形判定方法:
⑴ 定义:有一个角是直角的平行四边形叫做矩形。
⑵ 方法1:对角线相等的平行四边形是矩形。
⑶ 方法2:有三个角是直角的四边形是矩形。
三、菱形
1、菱形的定义 :有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;
⑵ 菱形的四条边都相等;
⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷ 菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,
可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3、菱形的判定方法:
⑴ 定义:一组邻边相等的平行四边形是菱形。
⑵ 判断方法1:对角线互相垂直的平行四边形是菱形。
⑶ 判断方法2:四条边相等的四边形是菱形。
4、菱形面积的计算:
菱形面积 = 底×高 = 对角线长乘积的一半 S菱形=1/2×ab(a、b为两条对角线)
归纳:对角线互相垂直的四边形的面积等于对角线长乘积的一半。
四、正方形
1、正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。 警示:⑴ 正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;
⑵ 既是矩形又是菱形的四边形是正方形;
⑶ 正方形不仅是特殊的平行四边形,而且是特殊的矩形,还是特殊的菱形。
2、正方形的性质:
正方形具有四边形、平行四边形、矩形、菱形的一切性质。
⑴ 边―― 四条边都相等,邻边垂直、对边平行;
⑵ 角―― 四个角都是直角;
⑶ 对角线―― 对角线相等且互相垂直平分,每条对角线平分一组对角;
⑷ 对称性―― 是轴对称图形,有四条对称轴。
⑸ 特殊性质―― 正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
正方形的两条对角线把正方形分成四个全等的等腰直角三角形
3、正方形的判定:
判定一个四边形为正方形的主要依据是定义,途径有两条:
⑴ 先证它是矩形,再证它有一组邻边相等;
⑵ 先证它是菱形,再证它有一个角是直角。
五、梯形
1、梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。
2、梯形的分类: 一般梯形
⑴ 直角梯形:有一个角是直角的梯形。 梯形 直角梯形
特殊梯形 等腰梯形 ⑵ 等腰梯形:两腰相等的梯形。
3、等腰梯形的性质:
⑴ 等腰梯形两腰相等,两底平行;
⑵ 等腰梯形同一底边上的两个角相等;
⑶ 等腰梯形的两条对角线相等。
⑷ 等腰梯形是轴对称图形,它只有1条对称轴,过两底中点的直线是它的对称轴。
4、等腰梯形的判定:
⑴ 两腰相等的梯形是等腰梯形;
⑵ 在同一底上的两个角相等的梯形是等腰梯形;
⑶ 对角线相等的梯形是等腰梯形。
提示:等腰梯形的判定思路:先证四边形为梯形(即一组对边平行且不等或另一组对边不平行),再证两腰相等或同一底上的两个角相等。
5、解决梯形问题常用辅助线的作法:
解决梯形问题常用辅助线的作法如下图:
① ② ③ ④ ⑤
①“平移腰”:过上底端点作一腰的平行线,构造一个平行四边形和一个三角形; ②“作高”:使两腰在两个直角三角形中;
③“平移对角线”:使两条对角线在同一个三角形中;
④“延长两腰” :构造具有公共角的两个三角形;
⑤“等积变形”:连接梯形一腰的端点和另一腰中点,并延长与底的延长线交于一点,构成三角形。
转化
综上所述,解决梯形问题的基本思想和方法:梯形问题――――――→三角形或平行四边形问题,
分割、拼接
这种思路常常通过平移或旋转来实现。
六、重心
1、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平
衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。
2、几种几何图形的重心:
⑴ 线段的重心就是线段的中点;
⑵ 平行四边形及特殊平行四边形的重心是它的两条对角线的交点;
⑶ 三角形的三条中线交于一点,这一点就是三角形的重心;
⑷ 任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。
提示:⑴ 无论几何图形的形状如何,重心都有且只有一个;
⑵ 从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。
3、常见图形重心的性质:
⑴ 线段的重心把线段分为两等份;
⑵ 平行四边形的重心把对角线分为两等份;
⑶ 三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。
第二篇:新课标人教版八年级数学第十八章勾股定理知识点总结
新课标人教版八年级数学知识点总结
第十八章 勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,即如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
4.直角三角形的性质
(1)直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90°
(2)在直角三角形中,°角所对的直角边等于斜边的一半。
∠A=30° 可表示如下:?BC =1AB 2
∠C=90° (3)直角三角形斜边上的中线等于斜边的一半。 ∠ACB=90°
可表示如下:?CD =
D为AB的中点 1AB = BD = AD 2
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB = 90CD2?ADBD
? AC2?ADAB
CD⊥BC2?BDAB
6、常用关系式
由三角形面积公式可得:AB2CD=AC2BC
7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a?b?c,那么这个三角形是直角三角形。 222
8、命题、定理、证明
⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
假命题(错误的命题)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤
① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
